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Abstract— The shortage of sharp sand in many areas reduces raises the  cost of concrete production. This paper investigates the model 
development and optimization of the compressive strength of 60/40 laterite/sand hollow sandcrete block. Laterite is a reddish soil layer of-
ten belying the top soil in many locations and further deeper in some areas. The study applies the Scheffe’s optimization approach to ob-
tain a mathematical model of the form f(xi1,xi2,xi3,,xi4), where xi are proportions of the concrete components, viz: cement, laterite, sand and 
water. Scheffe’s experimental design techniques are followed to mould various hollow block samples measuring 450mm x 225mm x 
150mm and tested for 28 day The shortage of sharp sand in many areas reduces raises the  cost of concrete production. This paper inves-
tigates the model development and optimization of the compressive strength of 60/40 laterite/sand hollow sandcrete block. Laterite is a 
reddish soil layer often belying the top soil in many locations and further deeper in some areas. The study applies the Scheffe’s optimiza-
tion approach to obtain a mathematical model of the form f(xi1,xi2,xi3,,xi4), where xi  are proportions of the concrete components, viz: ce-
ment, laterite, sand and water. Scheffe’s experimental design techniques are followed to mould various hollow block samples measuring 
450mm x 225mm x 150mm and tested for 28 days strength. The task involved experimentation and design, applying the second order pol-
ynomial characterization process of the simplex lattice method.  The model adequacy is checked using the control factors. Finally a soft-
ware is prepared to handle the design computation process to take the desired property of the mix, and generate the optimal mix ratios. 
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     ——————————      —————————— 
 
1 INTRODUCTION 

oncrete is the main material of construction, and the ease 
or cost of its production accounts for the level of success 
in the area of environmental upgrading involving the 

construction of new roads, buildings, dams, water structures 
and the renovation of such structures.  To produce the con-
crete several primary components such as cement, sand, grav-
el and some admixtures are to be present in varying quantities 
and qualities.  Unfortunately, the occurrence and availability 
of these components vary very randomly with location and 
hence the attendant problems of either excessive or scarce 
quantities of the different materials occurring in different are-
as. Where the scarcity of one component prevails exceedingly, 
the cost of the concrete production increases geometrically. 
Such problems obviate the need to seek alternative materials 
for partial or full replacement of the scarce component when it 
is possible to do so without losing the quality of the concrete.  
 
1.1 Optimization Concept 

 Every activity that must be successful in human endeavour 
requires planning. The target of planning is the maximization 
of the desired outcome of the venture. In order to maximize 
gains or outputs it is often necessary to keep inputs or invest-
ments at a minimum at the production level. The process in-
volved in this planning activity of minimization and maximi-
zation is referred to as optimization, [8]. In the science of op-
timization, the desired property or quantity to be optimized is 
referred to as the objective function. The raw materials or 

quantities whose amount of combinations will produce this 
objective function are referred to as variables.    
 The variations of these variables produce different combina-
tions and have different outputs. Often the space of variability 
of the variables is not universal as some conditions limit them. 
These conditions are called constraints. For example, money is 
a factor of production and is known to be limited in supply. 
The constraint at any time is the amount of money available to 
the entrepreneur at the time of investment.  
 
Hence or otherwise, an optimization process is one that seeks 
for the maximum or minimum value and at the same time 
satisfying a number of other imposed requirements [5]. The 
function is called the objective function and the specified re-
quirements are known as the constraints of the problem. 
The construction of structures is a regular operation which 
heavily involves sandcrete blocks for load bearing or non-load 
bearing walls. The cost/stability of this material has been a 
major issue in the world of construction where cost is a major 
index. This means that the locality and the usability of the 
available materials directly impact on the achievable devel-
opment of any area as well as the attainable level of tech-
nology in the area. 
 
1.2 Concrete Mix Optimization  
The task of concrete mix optimization implies selecting the 
most suitable concrete aggregates from the data base.  Several 
methods have been applied. Nordstrom and Munoz [6] pro-
posed an approach which adopts the equilibrium mineral as-
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semblage concept of geochemical thermodynamics as a basis 
for establishing mix proportions. Bloom and Bentur [7] reports 
that optimization of mix designs require detailed knowledge 
of concrete properties. Low water-cement ratios lead to in-
creased strength but will negatively lead to an accelerated and 
higher shrinkage. Apart from the larger deformations, the ac-
celeration of dehydration and strength gain will cause crack-
ing at early ages.  
 
1.3 Modeling 
Modeling means setting up mathematical mod-
els/formulations of physical or other systems. Many factors of 
different effects occur in nature in the world simultaneously 
dependently or independently. When they interplay they 
could inter-affect one another differently at equal, direct, com-
bined or partially combined rates variationally, to generate 
varied natural constants in the form of coefficients and/or ex-
ponents. The challenging problem is to understand and asses 
these distinctive constants by which the interplaying factors 
underscore some unique natural phenomenon towards which 
their natures tend, in a single, double or multi phase system. 
 For such assessment a model could be constructed for a prop-
er observation of response from the interaction of the factors 
through controlled experimentation followed by schematic 
design where such simplex lattice approach of the type of 
Henry Scheffe [10] optimization theory could be employed. 
Also entirely different physical systems may correspond to the 
same mathematical model so that they can be solved by the 
same methods. This is an impressive demonstration of the 
unifying power of mathematics (Erwin Kreyszig, 2004). 
 
2. LITERATURE REVIEW   

 To be a good structural material, the material should be ho-
mogeneous and isotropic. The Portland cement, laterite or 
concrete are none of these, nevertheless they are popular con-
struction materials [15]. laterized concrete can be used in con-
structing cylindrical storage structures [14]. With given pro-
portions of aggregates the compressive strength of concrete 
depends primarily upon age, cement content, and the cement-
water ratio [12]. Tropical weathering (laterization) is a pro-
longed process of chemical weathering which produces a wide 
variety in the thickness, grade, chemistry and ore mineralogy 
of the resulting soils [13].  
The mineralogical and chemical compositions of laterites are 
dependent on their parent rocks [13]. Laterite formation is fa-
voured in low topographical reliefs of gentle crests and 
plateaus which prevent the erosion of the surface cover [2]. 
Laterites reflect past weathering conditions [3]. Present-day 
laterite occurring outside the humid tropics are considered to 
be indicators of climatic change, continental drift. The miner-
alogical and chemical compositions of laterites are dependent 
on their parent rocks [13]. 

Of all the desirable properties of hardened concrete such as 
the tensile, compressive, flexural, bond, shear strengths, etc., 
the compressive strength is the most convenient to measure 
and is used as the criterion for the overall quality of the hard-
ened concrete [5]. 
The task of concrete mix optimization implies selecting the 
most suitable concrete aggregates from the data base ([6]. Op-
timization of mix designs require detailed knowledge of con-
crete properties [7]. The task of concrete mix optimization im-
plies selecting the most suitable concrete aggregates from a 
data base (Genadji and Juris, 1998). Mathematical models have 
been used to optimize some mechanical properties of concrete 
made from Rice Husk Ash (RHA), - a pozolanic waste [9], [8]. 
The inclusion of mound soil in mortar matrix resulted in a 
compressive strength value of up to 40.08N/mm2, and the ad-
dition of 5% of mound soil to a concrete mix of 1:2:4:0.56 (ce-
ment: sand: coarse aggregate: water) resulted in an increase of 
up to 20.35% in compressive strength, [11].  
Simplex is a structural representation (shape) of lines or planes 
joining assumed positions or points of the constituent materi-
als (atoms) of a mixture, and they are equidistant from each 
other ([4]. When studying the properties of a q-component 
mixture, which are dependent on the component ratio only the 
factor space is a regular (q-1)–simplex (S. Akhnazarov and V. 
Kafarov , 1982). Simplex lattice designs are saturated, that is, 
the proportions used for each factor have m + 1 equally spaced 
levels from 0 to 1 (xi = 0, 1/m, 2/m, … 1), and all possible com-
binations are derived from such values of the component con-
centrations, that is, all possible mixtures, with these propor-
tions are used (S. Akhnazarov and V. Kafarov, 1982).  
 
3. BACKGROUND THEORY  

This is a theory where a polynomial expression of any de-
grees, is used to characterize  a simplex lattice mixture com-
ponents. In the theory only a single phase mixture is covered. 
The theory lends path to a unifying equation model capable of 
taking varying componental ratios to fix approximately equal 
mixture properties. The optimization is the selectability, from 
some criterial (mainly economic) view point, the optimal ratio 
from the component ratios list that can be automatedly gener-
ated. Scheffe’s theory is one of the adaptations to this work in 
the formulation of response function for compressive strength 
of laterized concrete.    
 
3.1 Simplex Lattice  

 Simplex is a structural representation (shape) of lines or 
planes joining assumed positions or points of the constituent 
materials (atoms) of a mixture [4], and they are equidistant 
from each other. Mathematically, a simplex lattice is a space of 
constituent variables of X1, X2, X3,……, and Xi which obey 
these laws: 
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Xi< 0 
X≠negative                                   ……….(1)  
0 ≤ x i ≤ 1 
∑x i = 1 
i=1 
 
That is, a lattice is an abstract space.  
To achieve the desired strength of concrete, one of the essential 
factors lies on the adequate proportioning of ingredients 
needed to make the concrete. Henry Scheffe,[12], developed a 
model whereby if the compressive strength desired is speci-
fied, possible combinations of needed ingredients to achieve 
the compressive strength can easily be predicted by the aid of 
computer, and if proportions are specified the compressive 
strength can easily be predicted.  
 
 
3.2 Simplex Lattice Method  

In designing experiment to attack mixture problems involving 
component property diagrams the property studied is as-
sumed to be a continuous function of certain arguments and 
with a sufficient accuracy it can be approximated with a poly-
nomial [1]. When investigating multi-components systems the 
use of experimental design methodologies substantially re-
duces the volume of an experimental effort. Further, this obvi-
ates the need for a special representation of complex surface, 
as the wanted properties can be derived from equations while 
the possibility to graphically interpret the result is retained.  
 As a rule the response surfaces in multi-component systems 
are very intricate. To describe such surfaces adequately, high 
degree polynomials are required, and hence a great many ex-
perimental trials. A polynomial of degree n in q variable has 
Cnq+n coefficients. If a mixture has a total of q components and 
x1 be the proportion of the ith component in the mixture such 
that,  
 
xi>= 0 (i=1,2, ….q),  . . (2) 
then the sum of the component proportion is a whole unity i.e. 
 
x1 + x2 + x3 + x4 = 1 or ∑x i – 1 = 0 . .     (3) 
 
where i = 1, 2, …., q… Thus the factor space is a regular (q-1) 
dimensional simplex. In (q-1) dimensional simplex if q = 2, we 
have 2 points of connectivity. This gives a straight line simplex 
lattice. If q=3, we have a triangular simplex lattice and for q = 
4, it is a tetrahedron simplex lattice, etc. Taking a whole factor 
space in the design we have a (q,m) simplex lattice whose 
properties are defined as follows: 
            i. The factor space has uniformly distributed points, 
            ii.  Simplex lattice designs are saturated (Akhnarova 
and Kafarov, 1982). That is,    
                 the proportions used for each factor have m + 1 
equally spaced levels from 0     

                  to 1 (xi = 0, 1/m, 2/m, … 1), and all possible combina-
tions are derived from  
                  such values of the component concentrations, that 
is, all possible mixtures,  
                  with these proportions are used. 
 
Hence, for the quadratic lattice (q,2), approximating the re-
sponse surface with the second degree polynomials  (m=2), the 
following levels of every  factor must be used 0, ½ and 1; for 
the fourth order (m=4) polynomials, the levels are 0, 1/4, 2/4, 
3/4 and 1, etc; Scheffe, (1958), showed that the number of 
points in a (q,m) lattice is given by  
 
Cq+m-1 = q(q+1)…(q+m-1)/m! ……. .. (4) 
 
 
3.2.1The (4,2) Lattice Model  

The properties studied in the assumed polynomial are real-
valued functions on the simplex and are termed responses. 
The mixture properties were described using polynomials as-
suming a polynomial function of degree m in the q-variable x1, 
x2 ……, xq, subject to Eqn (1), and will be called a (q,m) poly-
nomial having a general form: 
 
Ŷ= b0 +∑biXi + ∑bijXiXij + … + ∑bijk + ∑bi1i2…inXi1Xi2…Xin  
           ≤1≤q         i≤1<j≤q                        i≤1<j<k≤q 

    …… .. .. (5)i 
 
Ŷ = b0 +b1X1 + b2X2 + b3X3 + b4X4 + b12X1X2 + b13X1X3 + b14X1X4 
+ b24X2X4 + b23X2X3+ b34X3X4 b11X21 + b22X22+ b33X23 + b44X24      …
  …    (6)  
 

  where b is a constant coefficient. 
The relationship obtainable from Eqn (6) is subjected to the 
normalization condition of Eqn (3) for a sum of independent 
variables. For a ternary mixture, the reduced second degree 
polynomial can be obtained as follows: 
From Eqn (3)  
 X1+X2 +X3 +X4=1 ….   (7) 
i.e  
 b0 X2 + b0X2+ b0 X3+ b0X4 = b0                     (8) 
 
Multiplying Eqn. (3.7) by X1, X2, x3, x4, in succession gives 
            X12 = X1 - X1X2 - X1X3 - X1X4 
            X22 = X2 - X1X2 - X2X3 - X2X4     ……………….. (3.9) 
            X32 = X3 - X1X3 - X2X3 - X3X4 
            X42 = X4 - X1X4 - X2X4 - X3X4 
 
Substituting Eqn. (3.8) into Eqn. (3.9), we obtain after neces-
sary  transformation  that    
 Ŷ =   (b0 + b1 + b11 )X1   +   (b0 + b2 + b22 )X2 + (b0 +  b3 + b33)X3 + 
(b0 +  b4 + b44)X4 +   
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           (b12 - b11 - b22)X1X2 + (b13 - b11 - b33)X1X3 + (b14 - b11 - 
b44)X1X4 + (b23 - b22 -      

           b33)X2X3  + (b24 - b22 - b44)X2X4 + (b34 - b33 - 
b44)X3X4         .. ... (10)  
 
 If we denote 

                    βi   = b0 + bi + bii 
     and         βij   = bij  - bii - bjj, 
 
 then we arrive at the reduced second degree polynomial in 4 
variables:  
Ŷ = β1X1+ β2X2 + β3X3 + β4X4 + β12X1X2+ β13X1X3 + β14X1X4+ 
β23X2X23+ β24X2X4 +  
                          β34X3X4   . .      (11)  
Thus, the number of coefficients has reduced from 15 in Eqn 6 
to 10 in Eqn11. That is, the reduced second degree polynomial 
in q variables is  
 

Ŷ = ∑ βiXi +∑βijXi .. ..   
(12 )  
 

 
3.2.2 Construction of Experimental/Design Matrix  

From the coordinates of points in the simplex lattice, we can 
obtain the design matrix. We recall that the principal coordi-
nates of the lattice, only a component is 1 (Table 1) zero. 
 
Table1 Design matrix for (4,2) Lattice 

N X1 X2 X3 X4 Yexp 
1 1 0 0 0 Y1  
2 0 1 0 0 Y2 
3 0 0 1 0 Y3 
4 0 0 0 1 Y4 
5 ½ 1/2 0 0 Y12 
6 ½ 0 1/2 0 Y13 
7 1/2 0 0 1/2 Y14 
8 0 1/2 1/2 0 Y23 
9 0 1/2 0 1/2 Y24 
10 0 0 1/2 1/2 Y34 

 
Hence if we substitute in Eqn (11), the coordinates of the first 
point (X1=1, X2=0, X3=0,and X4=0, Fig 1, we get that Y1= β1.  
And doing so in succession for the other three points in the 
tetrahedron, we obtain  
 Y2= β2, Y3= β3, Y4= β4         .  (13) 
The substitution of the coordinates of the fifth point yields 
 Y12 = ½ X1 + ½X2 + ½X1.1/2X2 
       =  ½ β1 + ½ β 2 + 1/4 β12 
But as β i = Yi then 
 Y12 = ½ β1 - ½ β 2 - 1/4 β12 
Thus 
 β12   = 4 Y12 - 2Y1 - 2Y2  (14)  

 
And similarly, 
 β13   = 4 Y13 - 2Y1 - 2Y2 

 β23   = 4 Y23 - 2Y2 - 2Y3 

 etc. 
Or generalizing, 
 βi   =  Yiand β ij   = 4 Yij - 2Yi - 2Yj . .(15)  

which are the coefficients of the reduced second degree poly-
nomial for a q-component mixture, since the four points defin-
ing the coefficients βij lie on the edge. The subscripts of the 
mixture property symbols indicate the relative content of each 
component Xi alone and the property of the mixture is denot-
ed by Yi.  
 
 
3.2.3 Actual and Pseudo Components 

The requirements of the simplex that 

        ∑ Xi = 1  
 
makes it impossible to use the normal mix ratios such as 1:3, 
1:5, etc, at a given water/cement ratio. Hence a transformation 
of the actual components (ingredient proportions) to meet the 
above criterion is unavoidable. Such transformed ratios say 
X1(i) , X2(i) , and X3(i)  and X4(i) for the ith experimental points are 
called pseudo components. Since X1, X2, X3 and X4 are subject 
to ∑ Xi = 1, the transformation of cement:laterite:sandt :water 
at say 0.30 water/cement ratio cannot easily be computed be-
cause X1, X2, X3 and X4 are in pseudo expressions X1(i) ,  X2(i) ,  

and X3(i) .For  the ith experimental point, the transformation 
computations are to be done. 
 
The arbitrary vertices chosen on the triangle are 
A(1:6.01:2.90:0.30), B(1:6.07:2.93:0.45), C(1:5.26:.2.54:0.45), and  
D(1:6.75:3.25:0.50), based on experience and earlier research 
reports. 
  
     
       A(1: 6.01: 2.90:0.30)      
           
     
 

    
                                              D(1: 6.75: 3.25: 0.50) 
 B(1:6.07: 2.93: 0.45) 

 
                C(1: 5.26: 2.54: 0.45) 
 
Fig 1 Tetrahedral Simplex 
 
 
3.2.4 Transformation Matrix 
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        If Z denotes the actual matrix of the ith experimental 
points, observing from Table 2 (points 1 to 4), 
BZ = X =1 . . . .(16) 
  where B is the transformed matrix. 
Therefore,     B = I.Z-1 

Or  B=Z-1 .  (17) 
For instance, for the chosen ratios A1, A2 A3 and A4 (fig. 3.6), 
 
 
         
 
           1    6.01   2.90   0.30       
    Z =  1    6.07  2.93   0.45       . . .  (18) 
           1    5.26   2.54   0.45         
           1    6.75   3.25   0.50      
 
   
From Eqn (17), 
 
 
B =Z-1    

                   3.17     -10.40        7.70      -0.52 
     Z-1 =     20.63   -131.75      49.21     61.90 
                -42.86    276.19   -104.76  -128.57 
                  -6.35       4 .13         1.27      0.95 
 
 
Hence, 
                 
 B Z-1 =   Z. Z-1      
                
which gives the Xi(i=1,2,3,4) values in Table 2. 
 
The inverse transformation from pseudo component to actual  
component is expressed as  
AX  = Z . . .. . (19)  
  where A  = inverse matrix 
    A  =  Z X-1. 
From Eqn 3.16, X = BZ, therefore, 
 A = Z. (BZ)-1 

 A = Z.Z-1B-1 

 A =  IB-1 

      = B-1 . . . . . .
 . . . (20) 
This implies that for any pseudo component X, the actual 
component is given by  
 
      
    Z1(i)            1    6.01   2.90   0.30             X1(i) 
Z  Z2(i)     =  B1    6.07  2.93   0.45           X X2(i) ..          . (21).  
     Z3(i)                 1    5.26  2.54   0.45              X3(i) 

        Z4(i)                 1    6.75   3.25   0.50              X4(i) 

 

Eqn (21) is used to determine the actual components from 
points 5 to 10 , and the control values from points 11 to 13 (Ta-
ble 2). 
 
Table 2 Values for Experiment 

N X1 X2 X3 X4 RE-
SPONSE 

Z1 Z2 Z3 Z4 

1 1 0 0 0 Y1 
1 

6.0
1 2.9 

0.
3 

2 0 1 0 0 Y2 
1 

6.0
7 

2.9
3 

0.
45 

3 0 0 1 0 Y3 
1 

5.2
6 

2.5
4 

0.
45 

4 0 0 0 1 Y4 
1 

6.7
5 

3.2
5 

0.
5 

5 ½ 1/2 0 0 Y12 1.0
0 

6.0
4 

2.9
2 

0.
38 

6 ½ 0 1/2 0 Y13 1.0
0 

5.6
4 

2.7
2 

0.
38 

7 1//
2 

0 0 1/2 Y14 1.0
0 

6.3
8 

3.0
8 

0.
40 

8 0 1/2 1/2 0 Y23 1.0
0 

5.6
7 

2.7
4 

0.
45 

9 0 1/2 0 1/2 Y24 1.0
0 

6.4
1 

3.0
9 

0.
48 

1
0 

0 0 1/2 1/2 Y34 1.0
0 

6.0
1 

2.9
0 

0.
48 

Control points 
1
1 

0.2
5 

0.2
5 

0.2
5 

0.2
5 

Y1234 1.0
0 

6.0
2 

2.9
1 

0.
43 

1
2 0.5 

0.2
5 

0.2
5 0 

Y1123 1.0
0 

5.8
4 

2.8
2 

0.
38 

1
3 

0.2
5 0.5 0 

0.2
5 

Y1224 1.0
0 

6.2
3 

3.0
0 

0.
43 

 
 
3.2.5 Use of Values in Experiment 

During the laboratory experiment, the actual components 
were used to measure out the appropriate proportions of the 
ingredients: cement, laterite, sand and water, for mixing the 
lateritic concrete materials for casting the samples. The values 
obtained are presented in Tables in section 5. 
 
 
3.3 Adequacy of Tests 
 This is carried out by testing the fit of a second degree poly-
nomial (Akhnarova and Kafarov 1982). After the coefficients of 
the regression equation has been derived, the statistical analy-
sis is considered necessary, that is, the equation should be test-
ed for goodness of fit, and the equation and surface values 
bound into the confidence intervals. In experimentation fol-
lowing simplex-lattice designs there are no degrees of freedom 
to test the equation for adequacy, so, the experiments are run 
at additional so-called test points. 
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1≤i≤q 1≤i<j≤
 

1≤i<j≤q 1≤i≤q 
The number of control points and their coordinates are condi-
tioned by the problem formulation and experiment nature. 
Besides, the control points are sought so as to improve the 
model in case of inadequacy. The accuracy of response predic-
tion is dissimilar at different points of the simplex. The vari-
ance of the predicted response, SY2, is obtained from the error 
accumulation law. To illustrate this by the second degree pol-
ynomial for a ternary mixture, the following points are as-
sumed: 

Xi can be observed without errors [1]. 
The replication variance, SY2, is similar at all design points, 
and  
Response values are the average of ni and nij replicate ob-
servations at appropriate points of the simplex 
Then the variance SŶi and  SŶij  will be 
 (SŶ2)i=SY2/ni . . . . .
 . . . (22)  

 (SŶ2)ij=SY2/nij. . . . . .
 . . . (23)  
In the reduced polynomial, 

Ŷ = β1X1+ β2X2 + β3X3 + β4X4 + β12X1X2+ β13X1X3 + β14X1X4+ 
β23X2X23+ β24X2X4 +  

                          β34X3X4 . .(3.24) If we replace 
coefficients by their expressions in terms of responses, 
 

βi = Yi and β ij  = 4Yij – 2Yi – 2Yj 
Ŷ  = Y1X1 + Y 2X2 + Y 3X3++ Y4X4 +(4Y12 – 2Y1 – 2Y2 )X1X2  + 
(4Y13 – 2Y1 – 2Y3)X1X3  + (4Y14 – 2Y1 – 2Y4)X1X4  + (4Y23 – 
2Y2 - 2Y3 )X2X3 + (4Y24 – 2Y2 - 2Y4 )X2X4+ (4Y34 – 2Y3 - 2Y4 

)X3X4 

 
    = Y1(X1 – 2X1X2 –2X1X3 -2X1X4  )+ Y2(X2  - 2X1X2 - 2X2X3 -

2X2X4)+ Y3(X3 - 2X1X3  + 2X2X3 +2X3X4) + Y4(X4 - 2X1X4  + 
2X2X4 +2X3X4) + 4Y12X1X2 + 4Y13X1X3 + 4Y14X1X4 + 
4Y23X2X3  + 4Y24X2X4  + 4Y34X3X4     . . . .
 . . .(25) 
Using the condition X1+X2 +X3 +X4 =1, we transform the 
coefficients at Yi 

 X1 – 2X1X2 – 2X1X3  - 2X1X4=X1 – 2X1(X2 + X3 +X4) 

  = X1 – 2X1(1 - X1) = X1(2X1 – 1) and so on. . 
  . .  (26)  

  

Thus  
Ŷ = X1(2X1 – 1)Y1 + X2(2X2 – 1)Y2 + X3(2X3 – 1)Y3+ X4(2X4 – 
1)Y4+ 4Y12X1X2+ 4Y13X1X3+ 4Y14X1X4+ 4Y23X2X3   + 
4Y24X2X4   + 4Y34X3X4    . . . .
 . (27) 
Introducing the designation 
 ai = Xi(2X1 – 1) and aij = 4XiXj  . .

 . . .                (27a) 
and using Eqns (22) and (23) give the expression for the 
variance SY2. 
 

 SŶ2 = SY2 (∑aii/ni  + ∑a jj/nij) .. . (28) 
  
 
If the number of replicate observations at all the points of 
the design are equal, i.e. ni=nij= n, then all the relations for 
SŶ2 will take the form 
 
SŶ2 = SY2ξ/n .  . .           (29) 
where, for the second degree polynomial,  

 

              ξ  =  ∑ai2 +   ∑aij2 . .  
  .  .   .      .    .    .(30)  
  
As in Eqn (30), ξ is only dependent on the mixture com-
position. Given the replication Variance and the number 
of parallel observations n, the error for the predicted val-
ues of the response is readily calculated at any point of the 
composition-property diagram using an appropriate value 
of ξ taken from the curve. 
Adequacy is tested at each control point, for which pur-
pose the statistic is built: 
t = ∆Y/(SŶ2 + SY2) = ∆Yn1/2 /(SY(1 + ξ)1/2 . .(31) 
where ∆Y = Yexp – Ytheory  .   .(32) 
and  n = number of parallel observations at every point. 
The t-statistic has the student distribution, and it is com-
pared with the tabulated value of tα/L(V) at a level of sig-
nificance α, where L = the number of control points, and V 
= the number for the degrees of freedom for the replica-
tion variance. 
The null hypothesis is that the equation is adequate is ac-
cepted if tcal< tTable for all the control points. 
The confidence interval for the response value is  
 Ŷ - ∆ ≤  Y ≤ Ŷ + ∆ . . (33) 
∆ = tα/L,k SŶ  .   . (34) 
   where k is the number of polynomial 
coefficients determined. 
Using Eqn (29) in Eqn (34)    
∆ = tα/L,k SY(ξ/n)1/2 .. . (35) 
. .  

 
4. METHODOLOGY  

4.1 Introduction 

To be a good structural material, the material should be ho-
mogeneous and isotropic. The Portland cement, laterite or 
concrete are none of these, nevertheless they are popular con-
struction materials [15].The necessary materials required in 
the manufacture of the lateritic concrete in the study are ce-
ment, laterite, sand and water. 

4.1 Materials  
The disturbed samples of laterite material were collected at 
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i 

 

i 

 

   n 

Emene Enugu at the depth of 1.5m below the surface. 
The water for use is pure drinking water which is free from 
any contamination i.e. nil Chloride content, pH =6.9, and Dis-
solved Solids < 2000ppm. Ordinary Portland cement is the 
hydraulic binder used in this project and sourced from the 
Dangote Cement Factory, and assumed to comply with the 
Standard Institute of Nigeria (NIS) 1974, and kept in an air-
tight bag. All samples of the laterite material with properties 
which conformed to BS 882.  
 
4.2 Preparation of Samples 
The sourced materials for the experiment were transferred to 
the laboratory where they were allowed to dry. A samples of 
the laterite were prepared and tested to obtain the moisture 
content for use in proportioning the components of the laterit-
ic concrete to be prepared. The laterite was sieved to remove 
debris and coarse particles. The component materials were 
mixed at ambient temperature. The materials were mixed by 
weight according to the specified proportions of the actual 
components generated in Table 2. In all, two blocks of 450mm 
x225x150mm for each of six experimental points and three 
control points were cast for the compressive strength test, 
cured for 28 days after setting and hardening. 
 
 
4.3  Strength Test   

After 28 day of curing, the cubes and blocks were crushed, 
with dimensions measured before and at the point of shearing, 
to determine the lateritic concrete block strength, using the 
compressive testing machine to the requirements of BS 
1881:Part 115 of 1986.   
 
5 RESULT AND ANALYSIS  
5.1 Determination of Replication Error And Variance of 
Response  

To raise the experimental design equation models by the lat-
tice theory approach, two replicate experimental observations 
were conducted for each of the ten design points. 
Hence we have below, the table of the results (Table 3) which 
contains the results of two repetitions each of the 10 design 
points plus three Control Points of the (4,2) simplex lattice, 
and show the mean and variance values per test of the ob-
served response, using the following mean and variance equa-
tions below: 
 
 Ÿ =∑(Yr)/r .  .          (36) 
 
     where Ŷ is the 
mean of the response values and  

r =1,2. 
  

SY2  = ∑[(Y i  -  Ÿi)2]/(n-1) .        .   .     (37)  
where n = 13. 

      
     

Table 3 Result of the Replication Variance of the Compressive 
Strength Response for 450mm x225 x150mm Block 

Exper-
iment 
No (n) 

Repe-
tition 

Re-
spons

e 
fc 

(N/m
m2) 

Re-
sponse 
Sym-
bol 

∑
Yr 

 
Ÿr ∑(

Yr 

- 
Ÿr

)2 

 
    
S
i
2 

1 1A 
1B 

1.09 
1.23 

Y1 
 

2.
32 1.16 0.

01 

0
.
0
0 

2 2A 
2B 

2.00 
0.89 Y2 

 
2.
89 

1.45 0.
62 

0
.
0
5 

3 3A 
3B 

1.23 
1.46 Y3 2.

69 1.35 0.
03 

0
.
0
0 

4 4A 
4B 

2.11 
1.91 Y4 4.

02 2.01 0.
02 

0
.
0
0 

5 5A 
5B 

2.01 
2.11 Y12 4.

12 2.06 0.
01 

0
.
0
0 

6 6A 
6B 

0.98 
1.46 Y13 2.

44 1.22 0.
12 

0
.
0
1 

7 7A 
7B 

1.30 
1.80 Y14 

3.
10 1.55 0.

13 

0
.
0
1 

 
8 

8A 
8B 

2.68 
2.01 Y23 

4.
69 2.35 0.

22 

0
.
0
2 

9 9A 
9B 

1.63 
1.35 Y24 

2.
98 1.49 0.

04 

0
.
0
0 

10 10A 
10B 

2.14 
0.95 Y34 

3.
09 1.55 0.

71 

0
.
0
6 

 
Control Points 
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11 

11A 
11B 

1.73 
1.51 C1234 

 

3.
24 

1.
62 

0.
02 

0
.
0
0 

12 12A 
12B 

1.59 
0.88 C1123 

 

2.
47 

1.
24 

0.
25 

0
.
0
2 

13 13A 
130B 

1.68 
1.10 C1224 

 

2.
78 

1.
39 

0.
17 

0
.
0
1 

                          
      2.33            0.19   
 Replication Variance 
  
SY2 = ∑Si2 =  0.19 
 
That’s  
Replication error SY = (0.19)1/2=0.44 
 
 
5.2  Determination of Regression Equation for the 
Compressive Strength. 

From Eqns (15) and Table 3 the coefficients of the reduced se-

cond degree polynomial is determined as follows: 

Thus, from Eqn (11),  

  Ŷc = 1.16X1+ 1.45X2 + 1.35X3  + 2.01X4 +3.03X1X2  -0.13X1X3  -

0.14X1X4 +3.80X2X3 - 

        0.95X2X4 - 0.53X3X4         .      .  (38) 
 
Eqn (38) is the mathematical model of the compressive 
strength of hollow sandcrete block based on 28-day strength. 
 
5.3 Test of Adequacy of the Compressive strength 
Model 

Eqn (38), the model, will be tested for adequacy against the 

controlled experimental results. 

We recall our statistical hypothesis as follows: 
1. Null Hypothesis (H0): There is no significant difference be-
tween the experimental  
    values and the theoretical expected results of the compres-
sive strength. 
2.Alternative Hypothesis (H1): There is a significant difference 
between the experimental   
   values and the theoretical expected results of the compres-
sive strength. 
 
 

5.3.1  t-Test for the Compressive Strength  Model  

If we substitute for Xi in Table 3 into Eqn (38), the theoretical 
predictions of the response (Ŷ) can be obtained. These values 
can be compared with the experimental results (Table 3). For 
the t-test (Table 4), a, ξ, t and ∆y are evaluated using Eqns (31, 
32, 35, 27a and 30) respectively. 
 
Table 4  t-Test for the Test Control Points 

N C
N 

I J ai aij ai2 aij2 ξ Ÿ Ŷ ∆y t 

1 C
1 

1 2 
-

0.1
25 

0.2
50 

0.0
16 

0.0
63 

0.
15 

1.
62 
 

1.
81 

-
0.
19 

0.
5
7 

1 3 
-

0.1
25 

0.2
50 

0.0
16 

0.0
63 

1 4 
-

0.1
25 

0.2
50 

0.0
16 

0.0
63 

  
2 3 

-
0.1
25 

0.2
50 

0.0
16 

0.0
63 

  
2 4 

-
0.1
25 

0.2
50 

0.0
16 

0.0
63 

  
3 4 

-
0.1
25 

0.2
50 

0.0
16 

0.0
63 

    
  

0.0
94 

0.3
75 

2 
C

2 

1 2 0.0
00 

0.5
00 

0.0
00 

0.2
50 

0.

32 

1.

24 

 

1.

75 

-

0.

51 

1.

4

3 

1 3 0.0
00 

0.5
00 

0.0
00 

0.2
50 

1 4 0.0
00 

0.0
00 

0.0
00 

0.0
00 

  2 3 0.0
00 

0.2
50 

0.0
00 

0.0
63 

  2 4 0.0
00 

0.0
00 

0.0
00 

0.0
00 

  3 4 0.0
00 

0.0
00 

0.0
00 

0.0
00 

    
  

0.0
00 

0.5
63 

3 
C

3 

1 2 
-

0.1
25 

0.5
00 

0.0
16 

0.2
50 

0.

33 

1.

39 

1.

77 

-

0.

38 

1.

0

6 

1 3 
-

0.1
25 

0.0
00 

0.0
16 

0.0
00 

1 4 
-

0.1
25 

0.2
50 

0.0
16 

0.0
63 

2 3 -
0.1

0.0
00 

0.0
16 

0.0
00 
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25 

2 4 
-

0.1
25 

0.5
00 

0.0
16 

0.2
50 

3 4 
-

0.1
25 

0.0
00 

0.0
16 

0.0
00 

  
  

0.0
94 

0.5
63 

  

Significance level α = 0.05, 

i.e.          tα/L(V) =t0.05/3(13), where L=number of 

control  points. 

        From the Student’s t-table, the tabulated value of tα/L (V) = 
t0.05/3(13) is found to be 2.450 which is greater than the calculat-
ed t-values in Table 4. Hence we can accept the Null Hypothe-
sis. 
 
 

From Eqn 3.35, with k=10 and tα/k,v =t0.05/k(13) = 3.01, 

∆   =   0.36 for C1234, 0.53 for C1124 =0.26, and 0.54 

for C1224, 

 which satisfies the confidence inter-

val equation of Eqn (33) when viewed against 

most response values in Table 4. 

 
5.2  Computer Program  

The computer program is developed for the model (APPEN-
DIX 1). In the program any Compressive Strength  can be spec-
ified as an input and the computer processes and prints out 
possible combinations of mixes that match the property, to the 
following tolerance: 
Compressive Strength  -    0.001 N/mm2, 
     
Interestingly, should there be no matching combination, the 
computer informs the user of this. It also checks the maximum 
value obtainable with the model.   
  
5.2.1 Choosing a Combination  

It can be observed that the strength of 2.35 N/sq mm yielded 5 
combinations. To accept any particular proportions depends 
on the factors such as workability, cost and honeycombing of 
the resultant lateritic concrete. 
 
6 CONCLUSION AND RECOMMENDATION 
6.1  Conclusion  

Henry Scheffe’s simplex design was applied successfully to 
prove that the modulus of  of lateritic concrete is a function of 
the proportion of the ingredients (cement, laterite, sand and 
water), but not the quantities of the materials. 
The maximum compressive strength obtainable with the com-
pressive strength model is 2.35 N/sq mm. See the computer 
run outs in APPENDIX 2 which show all the possible lateritic 
concrete mix options for the desired  modulus property, and 
the choice of any of the mixes is the user’s. 
One can also draw the conclusion that the maximum values 
achievable, within the limits of experimental errors, is quite 
below that obtainable using sand as aggregate. This is due to 
the predominantly high silt content of laterite. 

It can be observed that the task of selecting a particular mix 
proportion out of many options is not easy, if workability and 
other demands of the resulting lateritic concrete have to be 
satisfied. This is an important area for further research work. 

The project work is a great advancement in the search for the 
applicability of laterized sandcrete production in regions 
where sand is extremely scarce with the ubiquity of laterite.  
 
6.2 Recommendations 

From the foregoing study, the following could be recommend-
ed: 
i) The model can be used for the optimization of the strength 
of concrete made from cement, laterite and water.  
ii) Laterite aggregates cannot adequately substitute sharp sand 
aggregates for heavy  
construction. 
iii) More research work need to be done in order to match the 
computer recommended mixes with the workability of the 
resulting concrete.  
iii) The accuracy of the model can be improved by taking 
higher order polynomials of the simplex. 
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APPENDIX A 
 
'QBASIC BASIC PROGRAM THAT OPTIMIZES THE 
 PROPORTIONS OF SANDCRETE MIXES 
     'USING THE SCHEFFE'S MODEL FOR CONCRETE 
 COMPRESSIVE STRENGTH 
     CLS 
     C1$ = "(ONUAMAH.HP) RESULT OUTPUT ": C2$ =  
COMPUTER PROGRAM " 
     C3$ = "ON THE OPTIMIZATION OF A 4-COMPON- 
ENT SANDCRETE MIX" 
     PRINT C2$ + C1$ + C3$ 
     PRINT 
     'VARIABLES USED ARE 
     'X1, X2, X3,X4, Z1, Z2, Z3,Z4, Z$,YT, YTMAX, DS 
 
     'INITIALISE I AND YTMAX 
      
     I = 0: YTMAX = 0 
 
     
      FOR MX1 = 0 TO 1 STEP .01 
        FOR MX2 = 0 TO 1 - MX1 STEP .01 
          FOR MX3 = 0 TO 1 - MX1 - MX2 STEP .01 
             MX4 = 1 - MX1 - MX2 - MX3 
             YTM = 1.16 * MX1 + 1.45 * MX2 + 1.35 * MX3 + 2.01 * 
 MX4 + 3.03 * MX1 * MX2 - 13 * MX1 * MX3 - .14 * MX1 * 
 MX4 + 3.8 * MX2 * MX3 - .95 * MX2 * MX4 - .53 * MX3 *  
MX4 
             IF YTM >= YTMAX THEN YTMAX = YTM 

          NEXT MX3 
        NEXT MX2 
      NEXT MX1 
     INPUT "ENTER DESIRED STRENGTH, DS = "; DS 
     
     'PRINT OUTPUT HEADING 
     PRINT 
     PRINT TAB(1); "No"; TAB(10); "X1"; TAB(18); "X2"; TAB(  
"X3"; TAB(34); "X4"; TAB(40); "YTHEORY"; TAB(50); "  
TAB(58); "Z2"; TAB(64); "Z3"; TAB(72); "Z4" 
     PRINT 
     'COMPUTE THEORETICAL STRENGTH, YT 
      FOR X1 = 0 TO 1 STEP .01 
        FOR X2 = 0 TO 1 - X1 STEP .01 
          FOR X3 = 0 TO 1 - X1 - X2 STEP .01 
            X4 = 1 - X1 - X2 - X3 
            YT = 1.16 * X1 + 1.45 * X2 + 1.35 * X3 + 2.01 * X4 + 3.03 
 * X1 * X2 - .13 * X1 * X3 - .14 * X1 * X4 + 3.8 * X2 * X3 - .95 *  
X2 * X4 - .53 * X3 * X4 
 
            IF ABS(YT - DS) <= .001 THEN 
            'PRINT MIX PROPORTION RESULTS 
            Z1 = X1 + X2 + X3 + X4: Z2 = 6.01 * X1 + 6.07 * X2 + 5   
X3 + 6.75 * X4: Z3 = 2.9 * X1 + 2.93 * X2 + 2.54 * X3 + 3.25 *  
Z4 = .3 * X1 + .45 * X2 + .45 * X3 + .5 * X4 
            I = I + 1 
            PRINT TAB(1); I; USING "##.###"; TAB(7); X1; TAB(  
X2; TAB(23); X3; TAB(32); X4; TAB(40); YT; TAB(48);  
TAB(56); Z2; TAB(62); Z3; TAB(70); Z4 
            PRINT 
            PRINT 
            IF (X1 = 1) THEN 550 
          ELSE 
            IF (X1 < 1) THEN GOTO 150 
          END IF 
 
 
150       NEXT X3 
        NEXT X2 
      NEXT X1 
    IF I > 0 THEN 550 
    PRINT 
    PRINT "SORRY, THE DESIRED STRENGTH IS OUT 
 OF RANGE OF MODEL" 
    GOTO 600 
 
550 PRINT TAB(5); "THE MAXIMUM VALUE PREDICT- 
ABLE BY THE MODEL IS "; YTMAX; "N / Sq mm " 
600 END 
 
APPENDIX 2 
A COMPUTER PROGRAM (ONUAMAH.HP) RESULT 
 OUTPUT ON THE OPTIMIZATION OF A 4-COMPONE  
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SANDCRETE  MIX 
 
ENTER DESIRED STRENGTH, DS = ? 1.7 
 
No       X1      X2      X3      X4    YTHEORY   Z1      Z2    Z3 
      Z4 
 1     0.100   0.120   0.690    0.090   1.700   1.000   5.566 2    
0.440 
 2     0.200   0.280   0.000    0.520   1.700   1.000   6.412 3    
0.446 
 3     0.250   0.000   0.070    0.680   1.700   1.000   6.461 3    
0.446 
 4     0.390   0.170   0.240    0.200   1.700   1.000   5.988 2    
0.402 
 5     0.550   0.190   0.090    0.170   1.700   1.000   6.080 2    
0.376 
    THE MAXIMUM VALUE PREDICTABLE BY THE MOD  
IS  2.350619 N / Sq mm 
Press any key to continue 
 
A COMPUTER PROGRAM (ONUAMAH.HP) RESULT 
 OUTPUT 
 ON THE OPTIMIZATION OF A 4-COMPON- 
ENT SANDCRETE  MIX 
 
ENTER DESIRED STRENGTH, DS = ? 2.4 
No       X1      X2      X3      X4    YTHEORY   Z1      Z2    Z3 
      Z4 
SORRY, THE DESIRED STRENGTH IS OUT OF RAN- 
GE OF MODEL 
 
Press any key to continue 
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